About 504,000 results
Open links in new tab
  1. Why are regression problems called "regression" problems?

    I was just wondering why regression problems are called "regression" problems. What is the story behind the name? One definition for regression: "Relapse to a less perfect or developed state."

  2. correlation - What is the difference between linear regression on y ...

    The Pearson correlation coefficient of x and y is the same, whether you compute pearson(x, y) or pearson(y, x). This suggests that doing a linear regression of y given x or x given y should be …

  3. How should outliers be dealt with in linear regression analysis ...

    What statistical tests or rules of thumb can be used as a basis for excluding outliers in linear regression analysis? Are there any special considerations for multilinear regression?

  4. regression - How to calculate the slope of a line of best fit that ...

    Dec 17, 2024 · This kind of regression seems to be much more difficult. I've read several sources, but the calculus for general quantile regression is going over my head. My question is this: …

  5. regression - Linear model with both additive and multiplicative …

    Sep 23, 2020 · In a log-level regression, the independent variables have an additive effect on the log-transformed response and a multiplicative effect on the original untransformed response:

  6. regression - Linear vs Nonlinear Machine Learning Algorithms

    Jan 6, 2021 · Three linear machine learning algorithms: Linear Regression, Logistic Regression and Linear Discriminant Analysis. Five nonlinear algorithms: Classification and Regression …

  7. Explain the difference between multiple regression and …

    There ain’t no difference between multiple regression and multivariate regression in that, they both constitute a system with 2 or more independent variables and 1 or more dependent …

  8. Minimal number of points for a linear regression

    Feb 10, 2023 · What would be a "reasonable" minimal number of observations to look for a trend over time with a linear regression? what about fitting a quadratic model? I work with composite …

  9. How to describe or visualize a multiple linear regression model

    Then this simplified version can be visually shown as a simple regression as this: I'm confused on this in spite of going through appropriate material on this topic. Can someone please explain to …

  10. Interpreting Z-Scores of Linear Regression Coefficients

    Jul 11, 2022 · Well, under the hypothetical scenario that the true regression coefficient is equal to 0, statisticians have figured out how likely a given Z-score is (using the normal distribution …