
NumPy
Nearly every scientist working in Python draws on the power of NumPy. NumPy brings the computational power of languages like C and Fortran to Python, a language much easier to …
NumPy - Installing NumPy
The only prerequisite for installing NumPy is Python itself. If you don’t have Python yet and want the simplest way to get started, we recommend you use the Anaconda Distribution - it includes …
numpy.where — NumPy v2.3 Manual
numpy.where # numpy.where(condition, [x, y, ]/) # Return elements chosen from x or y depending on condition.
Data types — NumPy v2.3 Manual
NumPy numerical types are instances of numpy.dtype (data-type) objects, each having unique characteristics. Once you have imported NumPy using import numpy as np you can create …
numpy.reshape — NumPy v2.3 Manual
NumPy reference Routines and objects by topic Array manipulation routines numpy.reshape
NumPy documentation — NumPy v2.3 Manual
The reference guide contains a detailed description of the functions, modules, and objects included in NumPy. The reference describes how the methods work and which parameters …
numpy.random.normal — NumPy v2.3 Manual
numpy.random.normal # random.normal(loc=0.0, scale=1.0, size=None) # Draw random samples from a normal (Gaussian) distribution.
NumPy quickstart — NumPy v2.3 Manual
NumPy’s main object is the homogeneous multidimensional array. It is a table of elements (usually numbers), all of the same type, indexed by a tuple of non-negative integers.
numpy.ndarray — NumPy v2.3 Manual
numpy.ndarray # class numpy.ndarray(shape, dtype=float, buffer=None, offset=0, strides=None, order=None) [source] # An array object represents a multidimensional, homogeneous array of …
numpy.round — NumPy v2.3 Manual
For values exactly halfway between rounded decimal values, NumPy rounds to the nearest even value. Thus 1.5 and 2.5 round to 2.0, -0.5 and 0.5 round to 0.0, etc.