
如何理解线性判别分析(LDA)算法?能够简洁明了地说明一下LDA算 …
LDA也不同于因子分析,它无需区分独立变量和因变量(也称为标准变量)。 当我们已经知道分组时就可以使用判别分析,而聚类分析是在不知道组的情况下进行的。 简单来说,判别函数分析就是分类。 …
如何利用R语言进行LefSe分析? - 知乎
8. 结论 以上步骤将帮助你使用R进行16S测序数据的LefSe分析,识别出在不同组之间有显著差异的OTU。 你可以根据LDA结果筛选出有显著差异的特征,并进行进一步的功能分析。
如何理解线性判别分析(LDA)算法?能够简洁明了地说明一下LDA算 …
LDA的特性 LDA具有以下属性: LDA假设数据是高斯数据。 更具体地说,它假定所有类共享相同的协方差矩阵。 LDA在K−1维子空间中找到线性决策边界。 因此,如果自变量之间存在高阶相互作用,则 …
LDA (Latent Dirichlet Allocations)主题模型如何计算主题强度?
LDA (Latent Dirichlet Allocations)主题模型如何计算主题强度? 最近在研究LDA主题模型,看论文中多次提及主题强度展示和主题演化的分析,很想代码复现,但苦于论文中并未阐明实现方法。 另外,在 …
用lda做主题提取,困惑度曲线都是递增,分类的词也都不理想,有什么 …
用lda做主题提取,困惑度曲线都是递增,分类的词也都不理想,有什么方法解决? 用lda做主题提取,gensim、lda、sklearn库都是试过了,困惑度曲线都是递增,分类的词也都不理想。 分词用的哈 …
谁能解释一下密度泛函理论(DFT)的基本假设和原理么? - 知乎
下面介绍一下用于计算交换-关联能量的各种近似方法。 1. 局域密度近似(Local Density Approximation, LDA) LDA是最简明的交换-关联泛函,并且提出得很早——几乎是和DFT一起提出的。 注意,LDA本 …
词向量,LDA,word2vec三者的关系是什么? - 知乎
Latent Dirichlet Allocation (LDA)和word2vec从模型上看几乎没有显著联系。 词向量则是所有对词进行表示的方法的统称。 关于联系你可以这样看:LDA的作用之一是通过对 doc-word矩阵 进行建模抽 …
目前有比 Topic Model 更先进的聚类方式么?比如针对短文本的、加入 …
比如LDA-U将一个user的多个发言聚合在一起减少稀疏影响。 但这种做法与应用相关,需要有外部信息来辅助找到聚合的单位。 2.是利用一个长文档文本集作为辅助数据,将长文本的一些信息先以某种形 …
把LDA主题模型作为自己的硕士课题,有什么可以做的? - 知乎
把LDA主题模型作为自己的硕士课题,有什么可以做的? 本人为普通二本小硕,这几天在准备开题,临时看了些论文,发现深度学习跟LDA主题模型都比较热。 在知乎上看到 把深度学习作为自己的硕士课 …
通俗的解释主流的主题模型及其扩展所适合解决的问题,包括PLSA, …
能不能通俗的解释原始的PLSA与LDA,及扩展的supervised LDA[1]与Labeled LDA[2]方法的优势和劣势,及其解…